Answer :
Let [tex]\ell[/tex] the length and [tex]w[/tex] the width. By the ratio of the sides:
[tex]\dfrac{w}{\ell}=\dfrac{4}{7}\Longrightarrow \dfrac{w}{31.5}=\dfrac{4}{7}\Longrightarrow w=\dfrac{4\cdot31.5}{7}\Longrightarrow \boxed{w=18~in.}[/tex]
Now, we'll find the perimeter p. We'll use the formula below:
[tex]p=2(\ell+w)\\\\ p=2(31.5+18)\\\\ p=2\cdot49.5\\\\ \boxed{p=99~in.}[/tex]
The area of a rectangle is [tex]S=w\cdot\ell[/tex]. Then:
[tex]S=w\cdot\ell\\\\ S=18\cdot31.5\\\\ \boxed{S=567~in.^2}[/tex]
[tex]\dfrac{w}{\ell}=\dfrac{4}{7}\Longrightarrow \dfrac{w}{31.5}=\dfrac{4}{7}\Longrightarrow w=\dfrac{4\cdot31.5}{7}\Longrightarrow \boxed{w=18~in.}[/tex]
Now, we'll find the perimeter p. We'll use the formula below:
[tex]p=2(\ell+w)\\\\ p=2(31.5+18)\\\\ p=2\cdot49.5\\\\ \boxed{p=99~in.}[/tex]
The area of a rectangle is [tex]S=w\cdot\ell[/tex]. Then:
[tex]S=w\cdot\ell\\\\ S=18\cdot31.5\\\\ \boxed{S=567~in.^2}[/tex]
Answer:
width=18
Step-by-step explanation:
So im not gonna give you the full everything but you get the width by doing (4/7)31.5 and that equals you answer which in this case is 18