a standard deck of 52 cards has 13 ranks (ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, jack, queen, king) and 4 suits (, , , and ), such that there is exactly one card for any given rank and suit. two of the suits ( and ) are black and the other two suits ( and ) are red. the deck is randomly arranged. what is the probability that the top card is red and the second card is black?