Answer :

We have the following expression given:

[tex]\frac{5^2-3^4}{(2^2-5)(6^2-9)}\text{ }[/tex]

In order to solve the problem let's find first the numbers with exponents:

[tex]5^2=5\cdot5=25[/tex][tex]3^4=\text{ 3}\cdot3\cdot3\cdot3=\text{ 9}\cdot9\text{ = 81}[/tex][tex]2^2=\text{ 2}\cdot2\text{ =4}[/tex][tex]6^2=\text{ 6}\cdot6=\text{ 36}[/tex]

Now we can replace the values in our expression and we got:

[tex]\frac{25-81}{(4-5)(36-9)}=\frac{-56}{(-1)\cdot(27)}=\text{ }\frac{-56}{-27}=\frac{56}{27}[/tex]

And the reason for the last step is because we can multiply and divide by -1 like this:

[tex]\frac{-56}{-27}\cdot\frac{-1}{-1}=\text{ }\frac{56}{27}[/tex]

Other Questions