Find a12 given the geometric sequence 2, -6, 18, -54, ...

Given the following geometric sequence:
[tex]2,-6,18,-54,........[/tex]We will find a12
We will use the following formula:
[tex]a_n=a*r^{n-1}[/tex]where a = the first term = 2
r = the common ratio = -6/2 = -3
To find a12, we will substitute n = 12
So,
[tex]a_{12}=2*(-3)^{12-1}=2*(-3)^{11}=-354,294[/tex]So, the answer will be A. -354,294