Find the standard deviation of the sampling distribution of sample means using the given information. Round to one decimal place if necessary

Solution:
Given;
[tex]\begin{gathered} \mu=59 \\ \sigma=10 \\ n=36 \end{gathered}[/tex]To find the standard deviation of the sampling distribution of the sample mean, the formula is
[tex]Standard\text{ deviation }\bar{X}=\frac{\sigma}{\sqrt{n}}[/tex]Substituting the values of the variables
[tex]\begin{gathered} Standard\text{ dev}\imaginaryI\text{at}\imaginaryI\text{on }\bar{X}=\frac{\sigma}{\sqrt{n}} \\ Standard\text{ dev}\mathrm{i}\text{at}\mathrm{i}\text{on }\bar{X}=\frac{10}{\sqrt{36}}=\frac{10}{6}=1.66666 \\ Standard\text{ deviation }\bar{X}=1.7\text{ \lparen one decimal place\rparen} \end{gathered}[/tex]Hence, the answer is 1.7 (one decimal place)