Label each equation in the system shown by the graph and find the solution as an ordered pair.Drag each to the appropriate location.

Andrea, this is the solution to this exercise:
Step 1. As you can see, the point of intersection of the red line and the blue line is
(-2, 1)
Step 2. Now, let's find the equation for each of the lines, as follows:
Blue line: We have two points (-3, 4) and (-1, -2)
The general equation of a line is:
y = mx + b, where m is the slope and b is the y-intercept.
m (slope) = (-2 - 4)/ (-1 - -3)
m = -6/2
m = -3
Let's calculate b, using (-1, -2):
-2 = -3 * -1 + b
-2 = 3 + b
-2 - 3 = b
b = -5
In consequence, the equation of the blue line is:
y = -3x - 5
Step 3: Let's find the equation of the red line, this way:
Red line, we have two points: (-4, 0) and (4, 4)
The general equation of a line is:
y = mx + b, where m is the slope and b is the y-intercept.
m (slope) = (4 -0)/ (4 - -4)
m = 4/8
m = 1/2 (Simplifying)
Let's calculate b, using (4, 4):
4 = 1/2 * 4 + b
4 = 2 + b
4 - 2 = b
b = 2
Therefore, the equation of the red line is:
y = 1/2x + 2