Write the coordinates of the vertices after a reflection across the x-axis. P (-5, -7) -> P' (___,___)Q (-5, -2) -> Q' (___,___)R (-9, -10) -> R' (___,___)

Answer :

The transformation rule for a reflection across the x-axis is:

[tex]A(x,y)\longrightarrow A^{\prime}(x,-y)[/tex]

We will apply this rue to the three vertices.

Reflection across the x-axis of P:

[tex]P(-5,-7)\longrightarrow P^{\prime}(-5,-(-7))[/tex]

In the image point, the x-coordinate remains the same, but we have to change the sign of the y-coordinate:

[tex]P(-5,-7)\longrightarrow P^{\prime}(-5,7)[/tex]

Reflection across the x-axis of Q:

[tex]Q(-5,-2)\longrightarrow Q^{\prime}(-5,-(-2))[/tex]

Simplifying the expression:

[tex]Q(-5,-2)\longrightarrow Q^{\prime}(-5,2)[/tex]

Reflection across the x-axis of R:

[tex]R(-9,-10)\longrightarrow R^{\prime}(-9,-(-10))[/tex]

simplifying the expression:

[tex]R(-9,-10)\longrightarrow R^{\prime}(-9,10)[/tex]

Answer:

[tex]\begin{gathered} P(-5,-7)\longrightarrow P^{\prime}(-5,7) \\ Q(-5,-2)\longrightarrow Q^{\prime}(-5,2) \\ R(-9,-10)\longrightarrow R^{\prime}(-9,10) \end{gathered}[/tex]