Answer :

We have the following equation

[tex]4x^2-12x=91\Rightarrow4x^2-12x-91=0[/tex]

We can solve it using the quadratic formula:

[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]

Where, in our problem

a = 4

b = -12

c = -91

Therefore

[tex]\begin{gathered} x=\frac{-(-12)\pm\sqrt[]{(-12)^2-4\cdot4\cdot(-91)}}{2\cdot4} \\ \\ x=\frac{12\pm\sqrt[]{144+16\cdot91)}}{8} \\ \\ x=\frac{12\pm\sqrt[]{144+1456}}{8} \\ \\ x=\frac{12\pm\sqrt[]{1600}}{8} \\ \\ x=\frac{12\pm40}{8} \end{gathered}[/tex]

Now we have the solutions, we only want the negative one, then

[tex]\begin{gathered} x=\frac{12-40}{8} \\ \\ x=-\frac{28}{8} \\ \\ x=-3.5 \end{gathered}[/tex]

The negative solution of the equation is -3.5, then, the correct answer is the letter A.

Other Questions