Answer :
ANSWER
[tex]\begin{equation*} 324.25\text{ nm} \end{equation*}[/tex]EXPLANATION
To find the thickness of the bubble at that point, apply the condition for constructive interference:
[tex]2nd\cos\theta=(2m+1)\frac{\lambda}{2}[/tex]where d = thickness
n = refractive index
m = 0, 1, 2...
For the second longest wavelength, m = 1, and for normal incidence:
[tex]\theta=0\degree[/tex]Therefore, substituting the given values into the equation and solving for d:
[tex]\begin{gathered} 2nd\cos0=\frac{3}{2}\lambda \\ \\ 2nd=\frac{3}{2}\lambda \\ \\ d=\frac{3\lambda}{4n}=\frac{3*575}{4*1.33} \\ \\ d=324.25\text{ nm} \end{gathered}[/tex]That is the thickness of the bubble.