Given rectangle ABCD, where AB = 5, BC = 24. AE is drawn such that E is the midpoint of BC. If F is the point of intersection of BD and AE, find the length of FE. Draw a diagram.

Answer :

Consider the schematic diagram below,

Given that E is the mid point of BC,

[tex]BE=EC[/tex]

The side BC measures 24 units, then it follows that,

[tex]\begin{gathered} BE=\frac{BC}{2}=\frac{24}{2}=12 \\ \Rightarrow BE=EC=12 \end{gathered}[/tex]

It is known that the angle between two adjacent sides of a rectangle is 90 degrees. So the triangle BCD will be a right triangle.

In the triangle BCD,

[tex]\begin{gathered} \angle CBD=\tan ^{-1}(\frac{CD}{BC})^{} \\ \angle CBD=\tan ^{-1}(\frac{5}{24}) \\ \angle CBD\approx11.77^{\circ} \end{gathered}[/tex]

Similarly, in the right triangle ABE,

[tex]\begin{gathered} \angle AEB=\tan ^{-1}(\frac{AB}{BE})^{} \\ \angle AEB=\tan ^{-1}(\frac{5}{12}) \\ \angle AEB\approx22.62^{\circ} \end{gathered}[/tex]

Theorem: The sum of internal angles of a triangle is 180 degrees.

Applying this theorem in triangle BFE,

[tex]\begin{gathered} \angle BFE+\angle FBE+\angle FEB=180 \\ \angle BFE+11.77+22.62=180 \\ \angle BFE=180-22.62-11.77 \\ \angle BFE\approx145.61 \end{gathered}[/tex]

Now, apply the sine rule in the triangle BFE,

[tex]\begin{gathered} \frac{BF}{\sin\angle BEF}=\frac{FE}{\sin\angle FBE}=\frac{EB}{\sin \angle BFE} \\ \frac{BF}{\sin 22.62}=\frac{FE}{\sin(11.77)}=\frac{12}{\sin(145.61)} \\ \frac{BF}{\sin22.62}=\frac{FE}{\sin(11.77)}=21.24 \end{gathered}[/tex]

It follows that,

[tex]\begin{gathered} FE=21.24\times\sin (11.77) \\ FE=21.24\times0.204 \\ FE\approx4.33 \end{gathered}[/tex]

Thus, the length of the side FE is 4.33 units, approximately.

${teks-lihat-gambar} AadynI225601

Other Questions