Answer :

Solution:

(a) In the given figure,

[tex]\angle ABO=x[/tex]

BD is the bisector of angle ABC, thus:

[tex]\angle ABD=\angle DBC[/tex]

So, write as follows:

(i)

[tex]\angle ABC=\angle ABD+\angle DBC[/tex]

[tex]\begin{gathered} \angle ABC=\angle ABD+\angle ABD \\ \angle ABC=2\angle ABD \\ \angle ABC=2\angle ABO \\ \angle ABC=2x \end{gathered}[/tex]

Therefore,

[tex]\operatorname{\angle}ABC=2x[/tex]

(ii)

OB=OA=OD radii of the same circle.

As OB=OA then in triangle AOB,

[tex]\angle ABO=\angle BAO=x[/tex]

BOD is a diameter of a circle. then by theorem of circle,

[tex]\angle BAD=90^{\circ}[/tex]

thus,

[tex]\angle OAD=\angle BAD-\angle OAB[/tex]

[tex]\angle OAD=90^{\circ}-x[/tex]

OA=OD , in the tringle AOD,

[tex]\angle OAD=\angle ODA=90^{\circ}-x[/tex]

In triangle AOD,

[tex]\angle AOD+\angle OAD+\angle ODA=180^{\circ}[/tex]

[tex]\begin{gathered} \angle AOD+90^{\circ}-x+90^{\circ}-x=180^{\circ} \\ \angle AOD+180^{\circ}-2x=180^{\circ} \\ \angle AOD=2x \end{gathered}[/tex]

Therefore,

[tex]\begin{equation*} \angle AOD=2x \end{equation*}[/tex]

(iii) By the theorem of circle, the angle formed at the center of the circle is twice the angle formed at the circumference of the circle with the same base.

[tex]\angle AOC=2\angle ABC[/tex]

[tex]\begin{gathered} \angle AOC=2\times2x \\ \angle AOC=4x \end{gathered}[/tex]

Therefore,

[tex]\operatorname{\angle}AOC=4x[/tex]

(iv)

OA=OD , thus tringle AOD is an isosceles triangle,

[tex]\angle OAD=\angle ODA=90^{\circ}-x[/tex]

[tex]\begin{gathered} \angle ADO=90^{\circ}-x \\ \angle ADB=90^{\circ}-x \end{gathered}[/tex]

Therefore,

[tex]\begin{equation*} \angle ADB=90^{\circ}-x \end{equation*}[/tex]

Other Questions