Answer :

c) First, we need to convert 7π/6 radians to degrees. π radians are equivalent to 180°, then:

[tex]\frac{7\pi}{6}radians=\frac{7\pi}{6}radians\cdot\frac{180\text{ \degree}}{\pi\text{ radians}}=210\text{ \degree}[/tex]

From the table:

[tex]\sin (\frac{7\pi}{6})=\sin (210^o)=-\frac{1}{2}[/tex]

8π/3 can be expressed as follows:

[tex]\frac{8}{3}\pi=2\pi+\frac{2}{3}\pi[/tex]

The function tan(x) is periodic, with a period of π. This means that evaluating:

[tex]\tan (\frac{8}{3}\pi)[/tex]

is the same as evaluating:

[tex]\tan (\frac{2}{3}\pi)[/tex]

In this case, x (the input in the function) is translated 2π units to the left. From the periodicity of the function, the values are the same.

2π/3 radians is converted to degrees as follows:

[tex]\frac{2\pi}{3}radians=\frac{2\pi}{3}radians\cdot\frac{180\text{ \degree}}{\pi\text{ radians}}=120\text{ \degree}[/tex]

From the table:

[tex]\tan (\frac{2}{3}\pi)=\tan (120^o)=-\sqrt[]{3}[/tex]

Substituting these values into the original expression:

[tex]\begin{gathered} \sin (\frac{7\pi}{6})\cdot\tan (\frac{8}{3}\pi)= \\ =\sin (\frac{7\pi}{6})\cdot\tan (\frac{2}{3}\pi)= \\ =(-\frac{1}{2})\cdot(-\sqrt[]{3})= \\ =\frac{\sqrt[]{3}}{2} \end{gathered}[/tex]

${teks-lihat-gambar} AmbellinaB169749

Other Questions