Answer :

The dot product of two vectors

[tex]a=a_1i+a_2j+a_3kandb=b_1i+b_2j+b_3k[/tex]

Is given as

[tex]\begin{gathered} a\mathrm{}b=a_1b_1+a_2b_2+a_3b_3 \\ where,_{} \\ a_1=4,a_2=3,a_3=8_{} \\ b_1=7,b_2=2,b_3=-3 \end{gathered}[/tex]

By substitution, we will have that

[tex]\begin{gathered} a.b=(4\times7)+(3\times2)+(8\times-3) \\ a.b=28+6-24 \\ a.b=10 \end{gathered}[/tex]

Hence,

The dot product of u(4,3,8) and v(7,2,-3) is = 10

Other Questions