Answer :

ANSWER

[tex]\begin{gathered} -\frac{4(x+6)}{(x-5)(x+5)} \\ x\ne\pm5,\pm6,0 \end{gathered}[/tex]

EXPLANATION

We want to simplify the expression:

[tex]-\frac{4x}{x^2-25}\div\frac{(x^2-6x)}{x^2-36}[/tex]

To do this, first change the sign to a multiplication sign and flip the fraction on the right:

[tex]-\frac{4x}{x^2-25}\cdot\frac{x^2-36}{(x^2-6x)}[/tex]

Now, simplify the expression by applying the difference of two squares and factorization:

[tex]\begin{gathered} -\frac{4x}{(x-5)(x+5)}\cdot\frac{(x-6)(x+6)}{x(x-6)} \\ \Rightarrow-\frac{4}{(x-5)(x+5)}\cdot\frac{(x+6)}{1} \\ \Rightarrow-\frac{4(x+6)}{(x-5)(x+5)} \end{gathered}[/tex]

The expression will be invalid when x is:

[tex]\pm5,\pm6,0[/tex]

Therefore, the answer is option C.

Other Questions