Answer :

SOLUTION

Given the question in the image, the following are the solution steps to answer the question.

STEP 1: write the given values

[tex]\begin{gathered} P=12000 \\ R=\frac{6}{100}=0.06 \\ t=6\text{ years} \\ n=4\text{ since it is compounded quarterly} \end{gathered}[/tex]

STEP 2: Write the formula for Amount

[tex]A = P(1 + \frac{r}{n})^{nt}[/tex]

Where:

A=final amount

P=initial principal balance

r=interest rate

n=number of times interest applied per time period

t=number of time periods elapsed

STEP 3: Find the compounded amount

[tex]\begin{gathered} A=12000(1+\frac{0.06}{4})^{4\cdot6} \\ A=12000(1+0.015)^{24} \\ A=12000(1.015)^{24} \\ A=12000\cdot1.429502812 \\ A=17154.03374 \\ A\approx17154.03 \end{gathered}[/tex]

Hence, the amount after 6 years will be $17154.03

Other Questions