Answer :
The area of the rectangle is given by:
[tex]A=B\cdot H[/tex]Where:
B = Base
H = Height
Let's find B and H using the distance formula:
[tex]\begin{gathered} B=\sqrt[\square]{(-2-2)^2+(-4-(-6))^2} \\ B=\sqrt[\square]{16+4} \\ B=\sqrt[]{20} \end{gathered}[/tex][tex]\begin{gathered} H=\sqrt[\square]{(5-2)^2+(0-(-6))^2} \\ H=\sqrt[\square]{9+36} \\ H=\sqrt[]{45} \end{gathered}[/tex]Therefore:
[tex]\begin{gathered} A=\sqrt[]{20}\cdot\sqrt[]{45} \\ A=30 \end{gathered}[/tex]