given that g(×)=[tex] \frac{x - 3}{x + 4} [/tex]find each of following.a) g(6)b) g(3)c) g(-4)d) g(-15.75)e) g(x+h)
![given that g(×)=[tex] \frac{x - 3}{x + 4} [/tex]find each of following.a) g(6)b) g(3)c) g(-4)d) g(-15.75)e) g(x+h) class=](https://us-static.z-dn.net/files/d19/331137254b247976945924a816c9f343.png)
ANSWER:
[tex]\begin{gathered} a)\text{ 6} \\ b)\text{ 0} \\ c)\text{ inderminate} \\ d)\text{ 1.6} \\ e)\text{ }\frac{x+h-3}{x+h+4} \end{gathered}[/tex]STEP-BY-STEP EXPLANATION:
We have the following function
[tex]g(x)=\frac{x-3}{x+4}[/tex]Now, we calculate for each case the result of the function.
a) g(6)
[tex]g(6)=\frac{6-3}{6+4}=\frac{3}{10}[/tex]b) g(3)
[tex]g(3)=\frac{3-3}{3+4}=\frac{0}{7}=0[/tex]c) g(-4)
[tex]g(-4)=\frac{-4-3}{-4+4}=-\frac{7}{0}=\text{ inderminate}[/tex]d) g(-15.75)
[tex]g(-15.75)=\frac{-15.75-3}{-15.75+4}=\frac{-18.78}{-11.75}=1.59\cong1.6[/tex]e) g(x+h)
[tex]g(x+h)=\frac{x+h-3}{x+h+4}[/tex]