Answer :
We have to use the following formula
[tex]FV=PMT(\frac{(1+i)^n}{i})[/tex]Where FV = 32,000, i = 0.05, and n = 7.5.
[tex]\begin{gathered} 32000=\text{PMT(}\frac{(1+0.05)^{7.5}}{0.05}\text{)} \\ PMT\approx1,109.69 \end{gathered}[/tex]We have to use the following formula
[tex]FV=PMT(\frac{(1+i)^n}{i})[/tex]Where FV = 32,000, i = 0.05, and n = 7.5.
[tex]\begin{gathered} 32000=\text{PMT(}\frac{(1+0.05)^{7.5}}{0.05}\text{)} \\ PMT\approx1,109.69 \end{gathered}[/tex]