Find the cos equation given amplitude: 6, period: 2π, vertical shift: 0, and horizontal shift: 2000 A 1 2x

Given:
[tex]\begin{gathered} \text{ For cos equation Amplitude : 6, period : }2\pi,\text{ vertical shift : 0, and } \\ \text{ horizontal shift : }\frac{2\pi}{3}. \end{gathered}[/tex]Required:
Find the cos equation.
Explanation:
First of all we need to know cosine function. That is
[tex]\begin{gathered} y=Acos(B\theta-C)+D \\ Where, \\ A(Amplitude) \\ \frac{2\pi}{|B|}=period \\ \frac{C}{B}=phase(horixontal\text{ s}hift) \\ D=vertical\text{ }shift \end{gathered}[/tex]Now, the equation
[tex]y=6cos(\theta-\frac{2\pi}{3})[/tex]