Answer :

Given:

[tex]\begin{gathered} \text{ For cos equation Amplitude : 6, period : }2\pi,\text{ vertical shift : 0, and } \\ \text{ horizontal shift : }\frac{2\pi}{3}. \end{gathered}[/tex]

Required:

Find the cos equation.

Explanation:

First of all we need to know cosine function. That is

[tex]\begin{gathered} y=Acos(B\theta-C)+D \\ Where, \\ A(Amplitude) \\ \frac{2\pi}{|B|}=period \\ \frac{C}{B}=phase(horixontal\text{ s}hift) \\ D=vertical\text{ }shift \end{gathered}[/tex]

Now, the equation

[tex]y=6cos(\theta-\frac{2\pi}{3})[/tex]

Other Questions