Answer :

Solution

- We are asked to plot the function below:

[tex]y=\cos(\frac{1}{4}x)[/tex]

- The general formula for the cosine function is:

[tex]\begin{gathered} y=A\cos(Bx+C)+D \\ where, \\ \frac{2\pi}{T}=B \\ \\ T=\text{ Period} \end{gathered}[/tex]

- Comparing this general formula to the question, we have;

[tex]\begin{gathered} \frac{2\pi}{T}=\frac{1}{4} \\ \\ \therefore T=2\pi\times4 \\ T=8\pi \end{gathered}[/tex]

- This implies that the period is 8π. Thus, our graph should stop at 8π.

- We have 4 divisions along the x-axis, thus, each division must be

[tex]\frac{8\pi}{4}=2\pi[/tex]

- Plotting the graph, we have:

${teks-lihat-gambar} NeelaN496164

Other Questions