Answered

solve:
x^2-x-6/x^2=x-6/2x+2x+12/x

After multiplying each side by the equation LCD and simplifying, the resulting equation is...

Answer :

morgeron
first we look at the equation an determine our common denominator.

(X²-X-6) / X² = (X-6) / 2X + (2X+12) / X    (let's use 2X² as the comm denom)

multiply the first fraction by 2, the second by X, and the third by 2x

(2x²-2x-12) / 2x² = (x²-6x) / 2x² + (4x²+24x) / 2x²  (dropping the denominator)

2x² - 2x - 12 = x² - 6x + 4x² + 24x      (simplify)

-3x² - 20x - 12  (multiply by -1)
3x² + 20x + 12
(x + 6) (3x + 2)    (factored version)
MrRoyal

Equivalent equations are equations with equal values

The solution is: [tex]x = -\frac 23[/tex] or [tex]x = -6[/tex]

The equation is given as:

[tex]\frac{x^2-x-6}{x^2 }= \frac{x-6}{2x} + \frac{2x+12}{x}[/tex]

Take LCM

[tex]\frac{x^2-x-6}{x^2 }= \frac{x-6 + 2(2x + 12)}{2x}[/tex]

[tex]\frac{x^2-x-6}{x^2 }= \frac{x-6 + 4x + 24}{2x}[/tex]

Multiply both sides by x

[tex]\frac{x^2-x-6}{x }= \frac{x-6 + 4x + 24}{2}[/tex]

[tex]\frac{x^2-x-6}{x }= \frac{5x+18}{2}[/tex]

Cross multiply

[tex]2x^2 - 2x - 12 = 5x^2 + 18x[/tex]

Collect like terms

[tex]5x^2 -2x^2 + 18x + 2x + 12 = 0[/tex]

[tex]3x^2 + 20x + 12 = 0[/tex]

Expand

[tex]3x^2 + 18x + 2x + 12 = 0[/tex]

Factorize

[tex]3x(x + 6) + 2(x + 6) = 0[/tex]

Factor out x + 6

[tex](3x + 2)(x + 6) = 0[/tex]

Split

[tex](3x + 2)= 0[/tex] or [tex](x + 6) = 0[/tex]

Solve for x

[tex]x = -\frac 23[/tex] or [tex]x = -6[/tex]

Read more about equivalent equations at:

https://brainly.com/question/19521931

Other Questions