Answer :

imma just solve for f⁻¹(x) for this one

to solve fr the invers
replace f(x) with y
switch x and y
solve for y
replace y with f⁻¹(x)

I'm assuming your thing is [tex]f(x)=log_2(x+4)[/tex]

remember

[tex]log_a(b)=c[/tex] translates to [tex]a^c=b[/tex]

so
if we replace y with f(x)
[tex]y=log_2(x+4)[/tex]
switch
[tex]x=log_2(y+4)[/tex]
translate
[tex]2^x=y+4[/tex]
minus 4
[tex]2^x-4=y[/tex]
[tex]f^{-1}(x)=2^x-4[/tex]
evaluate
[tex]f^{-1}(3)=2^3-4[/tex]
[tex]f^{-1}(3)=8-4[/tex]
[tex][f^{-1}(3)=4[/tex]

it equals 4
F^-1(3)= 2^3-4=8-4=4
Hope this helps.

Other Questions