Answer :

the answer to your question is  4
isyllus

Answer:

k = 4

Step-by-step explanation:

Given: [tex](5a^2b^3)(6a^kb)=30a^6b^4[/tex]

Exponent law:

[tex]x^m\cdot x^n=x^{m+n}[/tex]

[tex]x^m\div x^n=x^{m-n}[/tex]

[tex]5\cdot 6\cdot a^2\cdot a^k\cdot b^3\cdot b=30a^6b^4[/tex]

[tex]30a^{2+k}b^{3+1}=30a^6b^4[/tex]

Compare the coefficient and power both sides

[tex]30=30[/tex]

[tex]a^{2+k}=a^6[/tex]

[tex]b^4=b^4[/tex]

Exponent must be equal if base is equal.

Thus, 2+k = 6

k = 6 - 2

k = 4

Hence, The vaue of k is 4

Other Questions