Answer :
[tex]\bf \begin{array}{lllll}
&x_1&y_1&x_2&y_2\\
% (a,b)
&({{ -2}}\quad ,&{{ -3}})\quad
% (c,d)
&({{ 3}}\quad ,&{{ -3}})
\end{array}
\\\\\\
% slope = m
slope = {{ m}}= \cfrac{rise}{run} \implies
\cfrac{{{ y_2}}-{{ y_1}}}{{{ x_2}}-{{ x_1}}}\implies \cfrac{-3-(-3)}{3-(-2)}
\\\\\\
\cfrac{-3+3}{3+2}\implies \cfrac{0}{5}\implies 0[/tex]
[tex]\bf \stackrel{\textit{point-slope form}}{y-{{ y_1}}={{ m}}(x-{{ x_1}})}\implies y-(-3)=0[x-(-2)] \\\\\\ y+3=0\implies y=-3[/tex]
[tex]\bf \stackrel{\textit{point-slope form}}{y-{{ y_1}}={{ m}}(x-{{ x_1}})}\implies y-(-3)=0[x-(-2)] \\\\\\ y+3=0\implies y=-3[/tex]