Answer :

creeds25
[tex] \sqrt{-80} \\ [/tex]
We can write it as:
[tex] \sqrt{-1} \times \sqrt{80} [/tex]
Apply imaginary number rule:
[tex] \sqrt{-1} =i[/tex]
We  get
[tex] =\sqrt{80} i[/tex]
Now factorise 80.
80=4 x 4 x 5 = 4² x 5
[tex] \sqrt{80}i = \sqrt{4^2 \times 5} i [/tex]
[tex] =\sqrt{4^2} \times \sqrt{5} i \\ =4 \sqrt{5} i[/tex]
[tex]Answer: \ 4 \sqrt{5} i[/tex]

carlosego
For this case what you should do is rewrite the function.
 We then have to rewrite:
 root (-80)
 root (- (16 * 5))
 4raiz (-5)
 Then remember that:
 Root (-1) = i
 We have then:
 4raiz (5) i
 Answer:
 The equivalent expression is:
 4raiz (5) i
 (option 3)

Other Questions