Answer :

calculista

Answer:

The solution set is [tex]x=-9[/tex]

Step-by-step explanation:

we have

[tex](x+9)(x+9)=0[/tex]

we know that

[tex](x+9)(x+9)=x^{2}+18x+81[/tex]

so

[tex]x^{2}+18x+81=0[/tex]

The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]x^{2}+18x+81=0[/tex]

so

[tex]a=1\\b=18\\c=81[/tex]

substitute in the formula

[tex]x=\frac{-18(+/-)\sqrt{18^{2}-4(1)(81)}} {2(1)}[/tex]

[tex]x=\frac{-18(+/-)\sqrt{0}} {2}[/tex]

The radicand is equal to zero, therefore, the solution has only one real solution

[tex]x=\frac{-18} {2}=-9[/tex]

Other Questions