Answer :
Answer: y = -3x - 1
The steps to find the equation are as follow:
1. Find the slope
2. Plug the slope into the general equation, y = mx + c
3. Find the y-intercept
4. Plug the y-intercept into the equation we created in step 2
And that will give us the equation of the line
-------------------------------------------
Find the slope
-------------------------------------------
x - 3y = 6 ←Rearrange the equation to matches the format y = mx + c
3y = x - 6 ←divide by 3 through
÷3 ÷3 ÷3
y =1/3x - 2
Sope = 1/3
Slope of the perpendicular line = - 3 (negative reciprocal)
--------------------------------------------------------------------------------------
Plug in the value of the slope into the general equation y = mx + c
--------------------------------------------------------------------------------------
y = mx + c
y = -3x + c
--------------------------------------------------------------------------------------
Find the y-intercept
--------------------------------------------------------------------------------------
y = -3x + c
At coordinate (-2, -7)
-7 = 3(-2) + c ←substitute x = -2 and y = -7
-7 = -6 + c ← add 6 to both side
+6 +6
c = -1
--------------------------------------------------------------------------------------
Plug the value of the y-intercept into the equation y = -3x + c
--------------------------------------------------------------------------------------
y = -3x + c
y = -3x -1
--------------------------------------------------------------------------------------
Answer: y = -3x - 1
--------------------------------------------------------------------------------------
The steps to find the equation are as follow:
1. Find the slope
2. Plug the slope into the general equation, y = mx + c
3. Find the y-intercept
4. Plug the y-intercept into the equation we created in step 2
And that will give us the equation of the line
-------------------------------------------
Find the slope
-------------------------------------------
x - 3y = 6 ←Rearrange the equation to matches the format y = mx + c
3y = x - 6 ←divide by 3 through
÷3 ÷3 ÷3
y =1/3x - 2
Sope = 1/3
Slope of the perpendicular line = - 3 (negative reciprocal)
--------------------------------------------------------------------------------------
Plug in the value of the slope into the general equation y = mx + c
--------------------------------------------------------------------------------------
y = mx + c
y = -3x + c
--------------------------------------------------------------------------------------
Find the y-intercept
--------------------------------------------------------------------------------------
y = -3x + c
At coordinate (-2, -7)
-7 = 3(-2) + c ←substitute x = -2 and y = -7
-7 = -6 + c ← add 6 to both side
+6 +6
c = -1
--------------------------------------------------------------------------------------
Plug the value of the y-intercept into the equation y = -3x + c
--------------------------------------------------------------------------------------
y = -3x + c
y = -3x -1
--------------------------------------------------------------------------------------
Answer: y = -3x - 1
--------------------------------------------------------------------------------------