Answer :
Answer:
The probability that all three suppliers will disrupt = 0.0023
Step-by-step explanation:
Below is the formula used to calculate the probability of disruption.
[tex]P(n ) = S + (1 – S) U^{n} \\[/tex]
[tex]S = Super \ event \\[/tex]
[tex]U = Unique \ event \\[/tex]
[tex]L = Loss \\[/tex]
[tex]S = 0.23 \ Percent = 0.0023 \\[/tex]
[tex]U = 1.4 \ Percent = 0.014 \\[/tex]
[tex]n = 3 \\[/tex]
[tex]\text{The probability of disrupton}, P(n ) = S + (1 – S) U^{n} \\[/tex]
[tex]= 0.0023 + (1 – 0.0023)(0.014)^{3} \\[/tex]
[tex]= 0.0023 + 0.9977(0.000002744) \\[/tex]
[tex]= 0.0023 + 0.000002 \\[/tex]
[tex]= 0.0023 \\[/tex]
Therefore, the probability that all three suppliers will disrupt = 0.0023