Answer :
Answer:
[tex]\sigma_z = 10[/tex]
Explanation:
Given
[tex]\bar x = 10[/tex]
[tex]\sigma_x = 8[/tex]
[tex]\bar y = 12[/tex]
[tex]\sigma_y = 6[/tex]
[tex]z = x + y[/tex]
Required
[tex]\sigma_z[/tex]
This is calculated as:
[tex]\sigma_z = \sqrt{Var(x) + Var(y)}[/tex]
Calculate [tex]Var(x)[/tex]
We have:
[tex]Var(x) = \sigma_x^2[/tex]
[tex]Var(x) = 8^2[/tex]
[tex]Var(x) = 64[/tex]
Calculate [tex]Var(y)[/tex]
We have:
[tex]Var(y) = \sigma_y^2[/tex]
[tex]Var(y) = 6^2[/tex]
[tex]Var(y) = 36[/tex]
So, we have:
[tex]\sigma_z = \sqrt{Var(x) + Var(y)}[/tex]
[tex]\sigma_z = \sqrt{64 + 36}[/tex]
[tex]\sigma_z = \sqrt{100}[/tex]
[tex]\sigma_z = 10[/tex]